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In this paper we consider the existence of best approximants in modular function
spaces by clements of sublattices. Modular function spaces are the natural
generalization of L,, p>0, Orlicz, Lorentz, and Koithe spaces. Let p be a
pseudomodular, L, the corresponding modular function space, and C a sublattice
of L,. Given a function fe L, we consider the minimization problem of finding
he C such that p(f —h)=inf{ f— g: ge C}. Such an £ is called a best approximant.
Problems of finding best approximants are important in approximation theory and
probability theory. In the case where C is L,(#) for some o-subalgebra # of the
original e-algebra, finding best approximants is closely related to the problem of
nonlinear prediction. Throughout most of the paper we assume only that p is a
pseudomodular and except in one section, we do not assume p to be orthogonally
additive. This allows, for instance, application to Lorentz type L, spaces. If p is a
semimodular or a modular, then L, can be equipped with an F-norm | -||, and one
considers the corresponding F-norm minimization problem. This paper gives
several existence theorems relating to this problem, a theorem comparing the set of
all best p-approximants with the set of all best | -|| ,-approximants and a unigueness
theorem. © 1990 Academic Press, Inc.

INTRODUCTION

In this paper we consider the existence of best approximants in modular
function spaces by elements of sublattices. Modular function spaces are the
natural generalization of L,, p>0, Orlicz, Lorentz, Marcinkiewicz, and
Ko6the spaces. In Preliminaries, we give some basic concepts and facts of
the theory. For further information the reader is referred to [10-127. In
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[23], Musielak gives a thorough exposition on the general theory of both
modular spaces and generalized Orlicz spaces. For information abont
classical Orlicz spaces see [16, 18,301, and for some generalizations see
[8,9,29]. The theory of modular spaces has proven to be useful in
approximation theory [14, 15, 20-22, 24,257, as well as in interpolation
theory [5, 12, 17], and in operator theory [6, 137].

Let p be a function pseudomodular satisfying the Fatou property (see
the remark after Definition 1.5), L, the corresponding modular function
space, and C a sublattice of L,. Given a function feL,, we consider the
minimization problem of finding he C such that p(f—h)=inf{f—g:
ge C}. Such an h is called a best p-approximant. For example, if L, is an
Musielak-Orlicz space (see Example 0.11), this problem is the problem of
finding 4 € C such that

[ 9e 700 =) du(x) = inf [ (. f(x) — £(x)) dutx)

Problems of finding best approximants are important in approximation
theory and in probability theory. In the case where C is L, (%) for some
o-subalgebra # of the original o-algebra, finding best approximants: is
closely related to the problem of nonlinear prediction (see, e.g., [3]). For
instance, if # is the o-subalgebra generated by {B,}, this problem of
finding best approximants can be stated as follows: Given a random
variable fe L, find a function £, constant on each B,, such that p(f—4)
is minimal. In many cases p(f — 4) represents the loss of information or the
average error suffered when f'is replaced by 4.

Best p-approximants are known by many different names in specific
situations. When C is L,(#), for a o-subalgebra %, best approximants in
L, are known as conditional expectations; in L,, for p> 1, as p-predictors
[1]; and in L, as conditional medians [27]. When C is an order closed
sublattice of L, they are known as p-means [2], and in Orlicz spaces as
p-approximants [197]. In this paper p is assumed to be a pseudomodular;
hence our results are applicable in all the above spaces as well as in many
others. For example, p need not be of symmetric type, so our results are
applicable in Musielak—-Orlicz spaces. Moreover, except in parts of
Section 4, we do not assume p to be orthogonally additive. This allows, for
instance, application to Lorentz spaces.

If p is a semimodular or a modular, then L, can be equipped with an
F-norm || -1, (Definition 0.6), and one considers the corresponding F-norm
minimization problem. This paper gives several existence theorems relating
to this problem and Theorem 54 compares the set of all best
p-approximants with the set of all best |-|,-approximants. Let us
emphasize that best approximants are usually not unique; however,
Section 5 gives some exceptions.
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The existence theorems presented in this paper can be used for proving
some convergence results that- arc closely related to the theory of
martingales. Moreover, by using the existence of best approximants we can
describe some properties of modular function spaces. Sets of best
approximants in Musielak-Orlicz spaces are described in [7].

PRELIMINARIES: MODULAR FUNCTION SPACES

Let us begin with basic definitions and well-known properties of modular
function spaces. Before giving the definition of a function modular let us
first recall the following.

DermiaTioN 0.1 [23]. Let ¥ be a vector space over R.
(a) If p: ¥V — [0, oo ] satisfies
(1) p0)=0,
(2) p(—v)=p(v) for every ve V, and

(3) plou+ pr)y<p(u)+ p(v), for every u,ve V whenever o, § =0
and a+f=1,

then p is a pseudomodular.
(b) If a pseudomodular p satisfies
(4) v=0, whenever p(lv)=0 for all A>0,
then p is a semimodular.
(c) If a semidomodular p satisfies
(5) ©v=0, whenever p(v)=0,
then p is a modular.

Let X be a nonempty set, 2 a c-algebra of subsets of X and Z< ¥ a
d-ring such that

(i) & is an ideal in X, that is En A e %, whenever Ec % and Ae X,
and

(i) there exists a nondecreasing sequence of sets {X}{° <2 such
that X= UZO=1 Xk'

By & we denote the linear space of all simple real valued functions of the
form
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where each r,eR, {4,}7c 2 is a disjoint family and 1, denotes the
characteristic function of a set 4. By

M (X, 2, P)

we mean the set of all functions f: X — [ —c0, oo ] such that there exists a
sequence of simple functions from & converging to f pointwise. Similarly

MX, 2, P?)={feM_ (X, X, ?): | f(x)] < oo foreach xe X}.

Derinmion 0.2, (Cf. [10, 11, 127).

(a) A mapping p: &xX - [0, o] is called a function pseudomodiilar
if it satisfies the following properties:
(1) p(0, A)=0 for each A 2.
(2) p(f, A)<p(g, A), if |f(x)| <|g(x)| for every xe A4, and A& Z.
3) p(f,-):2—>[0, 0] is a g-subadditive measure for each fe &,

(4) pla, 4) >0 whenever o — 0 for every 4 e 2. (Here « denotes
the constant function with value a.)

(5) pla, 4,) >0 for every € R, whenever 4, | ¢ and {4,} P < P.

{b) A function pseudomodular p is called a function semimodular if it
satisfies the following property:

(6) There exists oy >0 such that p(f, 4)=0 for every feR when-
ever Ae % and p(a, A)=0 for some o > «,.

(c) A function semimodular p satisfying (6) above with ;=0 is
called a function modular.

(d) The definition of p is then extended to all functions
feM_(X, X2, ?) and EecX by defining that

p(f, E)=sup{p(g, E): ge & and |g| <|f| on E}.

For the sake of simplicity, p(f) is written in place of p(f, X).

Some examples are given at the end of this section.

THeorREM 0.3 [10]. Each function pseudomodular (respectively function
semimodular and function modular) is a pseudomoduiar (respectively semi-
modular and modular).

Two important basic notions are those of p-null sets and the relation of
equality p-a.e. They play the same role as sets of measure zero and equality
a.e. in L? and Orlicz spaces.
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DeriNiTION 0.4. Let p be a function pseudomodular.

(a) A set Ae X is said to be p-null if p(g, A)=0 for every geé.

(b) A property P(x) is said to hold p-almost everywhere, (p-a.c.), if
the set

{xe X: P(x) does not hold }
is p-null.
(c) The set of all p-null sets from X' is denoted by .4,.

As usual we identify any pair of measurable sets whose symmetric
difference is p-null as well as any pair of measurable functions differing
only on a p-null set. With this in mind we make the following definition.

DeriNtTION 0.5. We define
M(X, 2, P, p)={fe M (X, Z, ?): fis finite p-a.e.},

where each fe M(X, 2, 2, p) is actually an equivalence class of functions
equal p-ae.

Where no confusion exists M or M(X,2) is written in place of
M(X, 2, 2, p).

DermniTion 0.6 [10].  Let p be a pseudomodular.

(a) A modular function space is the vector space L (X, 2), or briefly
L,, defined by

L,={feM:p(Jf)—>0asi—>0}.
(b) 1If p is a function semimodular, then the formula
/1, = inf{o>0: p(f/a) <o}
defines the p-norm in L,,.

THroreM 0.7 [10, 11, 12]. Let p be a function semimodular.

(@) (L, li-ll,) is an F-space, (ie., |-||, is an F-norm and the metric
space L, with d(f, g)= | f— gll,, is complete).

(b) 1 f.ll, =0 if and only if p(af,) — O for every a>0.

We also use another type of convergence in L.

DerniTiON 0.8. Let p be a pscudomodular.
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(a) We say {f,}® p-converges to f and write f, 5 f, if there exists
A >0 such that p(A(f,— f)) >0 as n—> 0.

(b) Aset D=L, is p-closed if f€ D, whenever fe L, and f, 5 ffor
some {f,} < D. Note that by Theorem 0.7(b), ||-|| ,-convergence implies
p-convergence and consequently a set is || -|| ,-closed if it is p-closed.

DeemNiTioN 0.9, Let p be a function pseudomodular.

(a) p is left continuous if for each fe M,

pUNTP(S) as ATL

(b) p is right continuous if for each fe M,

p(AfN)lp(f) as A|L
(c) p has the Fatou property if p(f,)? p(f). whenever |£,|1 (/] p-a.c.
for f, f,e M.
ProrosiTion 0.10 [107].

(1) A function pseudomodular p is left continuous if and only if p
satisfies the Fatou property.

(i1) If p is a left continuous function semimodular, then

(@) 1fll, 111N, whenever | f,| T1f] p-a..
(b) |-l is a function modular, that is p: & x X — [0, oo ] defined by

Pl A)=11114,

is a function modular, sup{p(g, A): g€ & and |g| <|f| on A} =114, for
each feM and L,=L;.

() p(NI<Lifand only if || f1, <1, and
(A pU/IAI) <A,

This section is concluded by some examples.
Exampre 0.11 (The Musielak—Orlicz Modular}. See, eg, [23 ] Let

o A)=] o, 1(x)) du(),

where u, a o-finite measure on X, and ¢: X xR —> [0, co) satisfy the
following.
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(a) o(x, u) is a continuous cven function of u#, nondecreasing on R™*,
such that ¢(x, 0)=0, ¢(x, u)>0 for u#0, and @(x, u) - o0, as u — .

(b) ¢(x, u) is a measurable function of x for each ue R.
The corresponding modular function space is called a Musielak—Orlicz
space (or a generalized Orlicz space), and is denoted by L?. If ¢ does not

depend on the first variable, then L¢ is called an Orlicz space. If
¢(u) = |ul?, for p>0, then L? is isomorphic to L*.

ExampLE 0.12 [4, 107]. Let

plfi ) =sup [ o(x, f(x)) du(),

pe

where ¢ is as in Example 0.11 and £ is a family of positive measures such
that sup, .o #(X) < . Then p is a function modular.

ExaMPLE 0.13 (Lorentz type L”-spaces [4, 10]). Let

plfs A)=sup [ /()" dp(x),

ted

where u is a fixed o-finite measure on X, 7 is a family of measurable trans-
formations 7: X —» X, and

po(E) = p(r ! (E)).

Then p is a function modular.

ExampLE 0.14. Let X=N, let 2 be the o-algebra of all subsets of N,
and let 2 be the d-ring of all finite subsets of N. Let 7, = {1, 2, ..,n} and
define

oUfs d)=sup T (@ k)~ 1)

n keAdAnl,

Then p is a function modular.

ExampLE 0.15. Given a sequence of function semlmodulars {pPe} s
such that A, =4, for each m and k, define

_v 1l a4
p(f, A)‘k; 251+ pulf, 4)

If we follow the convention that oo/0c0 = 1, then we obtain a function semi-
modular again.
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ExaMmpLE 0.16. In the same situation as (0.15}, define

p(f, A)= sip pelf, 4).

p is a function semimodular if and only if

(a) supg pela, A,,) >0 as 4,,| ¢ for each a € R, where each 4,, € #,
(b) sup, pu(o, A)— 0 as o — 0 for each 4 e 2.

This construction is used in Section 4.

SECTION 1
The following notions are new and are of frequent use.

DermNiTiON 1.1. If p is a nonzero function pseudomodular on X, we
define

m,(E)=sup{p(g, E): ge M}e[0, 0]

Remarks 1.2. (a) By convention m, = m (X).
(b) If & =B« M, then for each Ec 2,

m,(E)=sup p(g, E).

geB
For example B could be L,.
(¢) EelXis p-null if and only if m,(E)=0.
(d) If oo denotes the constant function with value co, then

p(o0, E)y=m,(E) forall EcZ.

DerNiTION 1.3, For any function fe L, define
Br=sup{f>0:p(ff)<m,}e[0, c0].

DerINITION 14. Given feM, f:X—>R, we define the function
rr: [0, B 1 10,m,] by
re(t) = p(if),

where by convention r (c0)=m,.
DeriniTiON 1.5, Let £, (respectively %, and 4,), be the set of all non-

zero function modulars p (respectively semimodulars and - pseudo-
modulars), such that for every fe M, r,: [0, ;] [0, m,] is continuous,

640/63/3-6
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Remarks. (a) In this paper we usually assume that pe %,, %, or &,,.
From this assumption it follows immediately that p is a left continuous
pseudomodular and therefore by Proposition 0.10 has the Fatou property.

(b) If B,>1, then p(1,f)|p(f) whenever A,|1; ie, p is right
continuous at f. This does not mean that p is right continuous at all
functions (not even those from L,). For instance, consider an Orlicz space
L? such that ¢ does not satisfy 4,. Then m,= o0 and f,>1 for some
functions (for example, bounded functions), while B,<1 for some other
functions [16].

PrOPOSITION 1.6. Let pe R, and fe M. Then fe€ L, if and only if §,>0.

Proof. Let feL,; then p(4f)— 0 as A — 0 and consequently p(4f) <m,
for A close to zero. (Recall: m,>0.) Conversely, take fe M and assume
that §,>0. Let 0< 4, — 0; then for # sufficiently large, 0 <4, <, and by
the preceeding remark we have p(4,f)=r.(4,) >0, ie, feL,.

The above proposition immediately implies our next result, which is used
frequently throughout the paper.
ProposiTioN 1.7. If pe R, then L,={feM:31>0with p(Af)<m,}.

ExaMpLE 1.8. In Musiclak-Orlicz spaces, as defined in Example 0.11,
pER,, and m,= 0.

ExampLe 19. If W¥:[0,0)—[0,a] is strictly increasing and
continuous, with P(0)=0 and if p, is a Musielak—Orlicz modular, then
p € R, where p(f)=Y(p,(f)), and satisfies that m,=a. For instance, if
p(f)=p(f)/(1 4+ pi(f)) (with the convention oo/co =1), then m,= 1.

ExampLe 1.10. In Lorentz type L*-spaces (sce Example 0.13),

p(f, 4)=sup [ 1£()17 di.(x)
teg V4
is in #,, and m, = co.
The following result gives some versions of the Fatou property that we
use frequently. The proofs are standard and are omitted.

Lemma 1.11. Let pe,.

(a) Letg,— g asn— oo, withg,, ge M and lim inf, p(g,) = a. Then
p(g) < a. Furthermore if a<m,, then geL,.

(b) If {g.} =M and each g, >0 then p(lim inf, g,) <liminf, p(g,).
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DerFNITION 1.12. A subset C of L, is called a lattice if f; A f,€C and
f1 Vv f,eC, whenever f,, f,eC. Recall that (f; A f5)(¢) =min{f(z), f>(1)}
and (f; v f2)(1) =max{f,(2), f2(1)}.

DermniTioN 1.13. A set C<= L, is called order closed in L,, if whenever
feL, with {f,}° < C such that f,1 for f,| f, then feC.

DerFINITION 1.14. We define % to be the family of all lattices C in L,
such that for any sequence {g;}7°<C, AF_, gx€L,; and & to be the
family of all lattices C in L, such that for any sequence {g;}{°<=C,
\/Ic;os 1 8k € Lp .

DermniTioN 1.15. (a) We understand the p-distance, respectively |- | -
distance, from an fe L, to a set D < L, to be the quantities

dist, (f, D)=inf{p(f —h): he D}

and

dist,.,, (f; D) =inf{/ —gl,: g D}.

(b) The set of all best p-approximants, respectively best |-|,-
approximants, of f with respect to D are denoted by

P,(f, D)={geD: p(f—g)=dist, (f, D)}

and

PI}-II,,(f’ D)= {gED: If— g“p:diSt“.“p {fs D)}

(c) If D satisfies P,(f, D)+ 4, respectively P\ (f, D)# 4, for every
feL,, we say D is p-proximinal, respectively |-||,-proximinal (see, e.g.,

[281).

PROPOSITION 1.16. Let pe R, and let V be any vector subspace of L,.
Then

sup |||, = sup p(g).

heV geV

Proof. In order to prove that sup,., |l#],<sup,.,p(g) we may
without loss of generality assume that

sup p(g)=a< .

geV
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Let ge V. Since V is a vector space, g/a € V and hence

p(g/a)<sup p(h)=a.

heV

By the definition of | -|| , it follows that | g||, <« = sup,., p(#) and because
we chose g arbitrarily from V,

sup [ gll, <sup p(h).

gevV heV

In order to prove that sup,.y [|4],>sup,., p(g), let a= s1'1p,,E v Al ,.
Define a left continuous function semimodular p, by p(f)= (1/x) p()). It
is well known that | g|f,, = (1/a) ||lag]l, for every ge V. From this it follows
that

1
sup Ithm—Sup lahll, =~ sup Al =1
hev hev® Xhev

and that 1/||4( ,, > 1 for every he V. Therefore p,(h) < p,(#/|h] ,,) for every
heV. By the left continuity of p;, pi(A/|lhl,)<|kl, for every heV.
Combining these we obtain that

1 1
o =p W< (o ) <kl =

h
121 5,
for every he V. Thus

sup p(h) <sup |ahll, =sup 2] ,,

heV heV heV
which completes the proof.

PROPOSITION 1.17. Let pe%, let feM, and let V be any vector
subspace of L,.

(@) If|fll,<m,, thenfelL,.
() I \fll,=zm,, then ||f|,=sup,cyligll,-

Proof of (a). Since p is left continuous, it follows that

p(”JfI,p)<|1f||,,<m,,.

Hence it follows from Proposition 1.7, that fe L,.

Proof of (b). Immediate from Proposition 1.16.
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ProposITION 1.18. If pe,, the following assertions are equivalent:
(a) If Ee X\, then m,(E)=m,.
(b) If 6=BcM, then sup,.sp(g, EYy=sup,czp(h) for every
Ee S\ A,
() If feM, and p(Af)<m, for some >0, then feL,.

Proof. Proof that (a) and (b) are equivalent is easy and is omitted. See
Remark 1.2

To prove that (c) follows from (a), consider f'e M, such that p(4f)<m,
for some 4> 0. Denote

E={x:|f(x)|=}.

By Proposition 1.7 it suffices to show that Ee.4,. By the definition of
m,(E)

m,(E)=p(#f, E)< p(Af) <m,;

hence by (a), Ee A,.
In order to prove that (a) follows from (c), suppose that E< X and that
m,(E)<m,. Define

o0 if xeF
s (X)Z{O if xeX\E.

Then p(f)=p(f, E)=m,(E)<m, and by (c) fe L,, which forces f to be
finite p-a.e. This shows that Ee .4, completing the proof.

DerFmviTioN 1.19. If p satisfies any of the equivalent statements in
Proposition 1.18, p is said to have property (X).

Most interesting function pseudomodulars have property (K); for
instance, Examples 0.11-0.14. See also Lemma 4.4. In (3.8) we present an
example that does not have this property.

SECTION 2

In this section we consider the lattice C = L, to be the subspace of all
Z-measurable functions in L,, where 4 is a g-subalgebra of 2. If L, is L?
or L? and best approximants are unique, then the operator P that assigns
the unique best approximant to each fe L, is known as the prediction
operator. See [1, 26].



350 KILMER, KOZLOWSKI, AND LEWICKI

DerFmNiTION 2.1. Let Yo X, let Ye X, and let # < X be a cg-algebra of
subsets of Y such that there exists a sequence of sets Y, e #n # with Y=
U, Y;. For each he M(Y, #), we define

= [h(x) if xeY
h(x)_{o if xeX\Y.

We consider M(Y, #) = M(X, X) by the embedding 4 — A.
Define p,: #x (Y, #) - [0, 0] by

puh, EY=p(h, E) for he&(Y,#) and EcA.

We call L, (Y, #) a modular function subspace of L, (X, ).

LemMma 22. Let peR,. If L, (Y, #) is a modular function subspace of
L,(X, X), then
(@) paes,,
(b) py(h)=p(h) for each he M(Y, B), and
(c) L, (Y, B)cL,(X,2X)
(d) IfheM(Y,®) and he L,(X, X), then he L, (Y, B).
The proof of this lemma is standard and is omitted.
In the next result we characterize #-measurable functions in term of
PB-atoms. By a ZH-atom, we mean a nonempty set A<= such that

whenever a nonempty set D = A is #-measurable, D = 4. The proof is also
standard and is omitted as well.

LeMMA 23. Let Y=\)_, Ay, where & is a g-algebra on Y and each A,
is a %B-atom. Then given h: Y - R, he M(Y, #) if and only if h is constant
on the #-atoms of Y.

We are now ready to present our first existence result.

THEOREM 24. Let pe X, and let L, (Y, B)# & be a modular function
subspace of L,(X, 2) such that Y=\};°_, Ay, where each A, is a #B-atom.
Then whenever f € L (X, X) is bounded on each A,,

P,(f, L, (Y, #))#¢.
Proof. Suppose that fe L,(X, X) is bounded on each 4. If

dist, (f, L,,(Y, #))= sup p(w),

we Ly
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then

p(f— g)=sup p(w) foreach gelL (Y, %)

welp

and hence
P, (f, L, (Y, B))=L, (Y, B)#¢.
We may therefore assume that

(a) dist,(f, L, (Y, #)) < sup p(w).

we L,

For each n, choose h,e L, (Y, %) so that
- ) I
plh,—f)<dist,(f, L, (Y, %))—%;.

Since 4, is #-measurable, 4, is constant on 4, by Lemma 2.3.
We can choose, for every k, a subsequence {h%}* < {h,} | such that

{he e {hiYe, forevery k
and so that whenever y e 4, either
hE(y) > h(A4y) . as n— o for some h{(A4;)eR

or .
R ()= f(»)To  as n- 0.

These choices are made inductively. Given ye 4, the former choice is
made when {h*~'(y)}>_, is bounded and the latter choice when it is not.
In this second case {h%(y)}_, is chosen as follows. By Lemma 2.3, if
{ht~Y(y)}>., is unbounded for some ye 4, it is unbounded for every
y € 4. Therefore, since f is bounded on each A, {A*~'(y)— f(¥)} =, is
unbounded for every y e 4, as well. In fact

(b) Cinf (K5 1(3) = f()1}=,  is unbounded.
yedg
Suppose {Af}7-' has been chosen from {A%~ '} . Since A%_, is constant

on A, and f is bounded on A,, {|k*_(»)—f(y)|:yed,} has a
supremum, say f. Now by (b) we can choose hke {hf~ '}, so that

inf () =1 > B
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Hence we have that

()= f =1k (p) = f(p)]  forevery yed,,

completing the induction.
Denote

G=\) {4y hE(y) - h(4,) for each ye A}

and H= Y\G. Note that G and He 4.
Define g, by the diagonal sequence, that is g, = A7. Define f,: ¥ > R by

_f&y) i yeG
f”(y)_{gk(y) if yeHn A,

and finally #: Y - R by

h(A,) if yed, and AycG

:1- =
h(y) 1£nf,,(y) {gk(y) if yed, and A <H.

Each f, € M(Y, #) by Lemma 2.3 and hence
(c) he M(Y, #),

because 4 =1lim, f,.
For each n, g, =h,, for some m, > n; hence for ye A, and each n>k we
have that

lg.(y)—f() if yeG
ley)—f(¥) if yeH

<lga(y)—f(Y)l
= b, (¥) = f(¥).

From this it follows that for every ye ¥,

(d) lim inf | £,(y) = /(y) lim inf |A,,, (7) = 7 (¥)]-

)~ FO) ={

Now by (d) and Lemma 1.11(b),
(e) p(ﬁ—f)=p(lﬁ—f|)=p(limninflfn—fl)
< p(lim inf |, — f1) <lim inf p(|%,,, ~ £1)

= dist,(f, L (Y, ).
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We claim that heP,(f, L, (Y, %#)). Recall (a); we are assuming
dist,(f, L, (Y, #))<m,. From this, Proposition 1.7, and (e) it follows that
h—feL,(X,X) and hence that

() he L, (X, X).

By (c), (f), and Lemma 2.2(d) we have that he L (Y, %). This and (¢)
yield he P,(f, L, (Y, #)), completing the proof.

If p is any left continuous function semimodular then it is easy to check
that the F-norm |-|,€%,. (See Prop.0.10(b).) Hence the following
theorem is an immediate corollary of Theorem 2.4,

THEOREM 2.5. Let p be any left continuous function semimodular and let
L,(Y,B)#¢ be a modular function subspace such that Y=\J7_; Ay,
where each A, is a #-atom. Then whenever f e L (X, Z) is bounded on each
Apes Py (s Lg(Y, B)) # ¢

The following are simple examples of spaces where Theorem 2.4 can be
applied to show the existence of a best approximant. This existence is often
not evident a priori.

ExampPLE 2.6. Let X=Y=R, let # the o-algebra generated by
{[n,n+1):neZ}, let p be any function pseudomodular, and let f be any
continuous function on R. Then by Theorem 2.4 there exists a best
p-approximant of f by a function constant on each interval [n, n+1).

Exampik 2.7. Let X=N;let p(h)=>7_, o(hlk)), where ¢ is an Orlicz
function (for example p(h) =37, |h(k)|?); and let Y= {1,2,3,..,300}. If
we define 2 to be all subsets of X and # to be all subsets of ¥, then for
any feL,(X,Z) we can apply Theorem 2.4 to obtain that ge L (Y, %)
(i.e., glk)=0, for k> 300), such that

p(f—g)=inf{p(f—h): he L (Y, B)}.
(Clearly g(k)= f(k) for k=1, 2, .., 300 and zero otherwise.)
Exampie 2.8. Modify example (2.6) above by taking # to be the
c-algebra generated by {{1,2,3}, {4,5,6},.. {298,299,300}}. Given
feL,(X,2), there is by Theorem 2.4, a best p-approximant of f by a

function constant on each set {1,2,3}, {4, 5,6}, .. {298,299, 300} and
zero otherwise.

ExampLE 2.9, Let Y=X=N, let X be the g-algebra of ail subsets of X,
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and let # be the o-algebra generated by {{1}, {2,3}, {4,5,6},
{7,8,9,10}, ...}. For each n define the probability measure y, by

1 for k=1,2,..,n

ta({k}) = _
0 for k=n+1,n+2,..

and then p by

oo 1 n
p(h)=sup | 1kl dt,=sup 3. u,({k}) h(k)| =sup— 3. |A(k)L
n X k=1

n k=1 n

Then given fe L ,(X, 2), there is by Theorem 2.4, a best p-approximant of
/by a function constant on the sets {{1}, {2, 3}, {4, 5,6}, {7,8,9,10}, ...}.

SECTION 3

In most of this section we assume X to be a countable set. Under this
additional hypothesis we prove several theorems on the existence of best
p-approximants. Among these is a theorem about modular function
subspaces in which we climinate the hypothesis of f being bounded on
#-atoms. We also obtain existence for order closed lattices and then
conclude with an interesting consequence of having existence.

Lemma 3.1. Let peR, have property (K). If X={x,}{°, X is the
c-algebra of all subsets of X and C < L, is a nonempty sublattice of L,, then
Sor each fe L,, there exists a sequence {h,}° = C and an he L, such that

{a) A, h pointwise on X and
(d) p(h—f)<lim, p(h,— f)=dist,(f, C).
Proof. Fix feL,. If
dist,(f, C) = sup p(g),

© gel,
then
p(f —w)=sup p(g) foreach welL,

gely

and we may take ~=#, to be any element of C. We may therefore assume
that

(c) dist,(f, C) < sup p(g)-

gELp
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Define D= C — f and note that
dist ,(f, C)=dist,(0, D)= inf p(g).
gebD

Choose {w,}{" = D such that
p(w,) <dist,(0, D)+ I/n for each n.

We claim that for each &, {|w,(x;)|}>., is a bounded set. If we suppose
otherwise, by passing to an appropriate subsequence, we may assume
lw,(x:)] T o for some fixed k.

Let ge L,. For sufficiently large n, [w,(x,)] > | g{x,)|, which shows that

(d) sup p(gl{xk}):sup p(|wn(xk)‘ 1{xk})

gel,
We can now obtain a contradiction as follows:

sup p(g)=sup p(gl () property (K)

gel, gel,

=sup p(|wa(x )l 1) by (d)

=lim p({w,(x )| 1) since  [w,(xy)] > o0
< lim inf p(w,) monotonicity of p
<dist, (0, D) since w,eD
<sup p(g) by (c).

gel,

This contradiction establishes our claim and makes it possibie, via a
diagonalization argument, to choose a subsequence {v,}; < {w,}{ and to
define a function w on X, so that for each k, v,(x;)— w{x,).

We claim we L,. Since each v, =w,, for some m>n,

dist,(0, D) < p(v,,) < dist (0, D) + 1/n,
which shows via Lemma 1.11(a) that
e)  p(w)<lim, p(v,)=dist,(0, D) <sup, ., p(g)<m,.

Thus we L, by property (K). (See 1.18(c).)
By defining 4, =v,+ ffor all n and h=w + f we immediately satisfy (a)
and (e) yields that

p(h— f) <lim p(h, — )= dist, (0, D) = dist,(f, C),

satisfying (b).
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THEOREM 3.2. Let X={x,}, and let X be the o-algebra of all subsets
of X. If pe R, has property (K), then L, (Y, #B) is p-proximinal.

Proof. By Lemma 3.1, there exists {,}eL (Y, %) and he L,(Y,2)
such that
(a) h,— h pointwise on Y and
(b) p(h—f)<lim, p(h,— f)=dist,(f, C).
From (a) we see that Ae M(Y, #) and by Lemma 2.2(b),

p5(Ah)=p(ih) >0 as 4]0.
Thus he L, (Y, #) and by (b) he P,(f, L, (Y, #)).

THEOREM 3.3. Let p be a left continuous function semimodular, X =
{xk}1 , and X2 the o-algebra of all subsets of X. If p has property (K), then
ool V> B) is || -] ,- proximinal.

Proof. It is easy to see that ||-||, is a continuous function modular with
property (K). Hence the proof is immediate by Theorem 3.2.

Theorem 3.2 is valid in the following example, although Theorem 2.4 is
not.

ExaMpPLE 34. Let Y=X=N, let X' be the g-algebra of all subsets of X,
and let # be the o-algebra {{evens}, {odds}, N, ¢}. Given a probability
measure (¢, X, 2) define p(h)=3Y.7_, o(h(k)) u({k}), where ¢ is an Orlicz
function. Then given feL,(X,2), there is by Theorem 3.2, a best
p-approximant of f by a function constant on the evens and on the odds.

THEOREM 3.5. Let pe @R, let X={x,}7, and let X be the o-algebra of
all subsets of X. In addition assume that p has property (K), that C is a non-
empty order closed sublattice of L,, and that

(a) CeX, or
(b) Ce, (see Definition 1 14).
Then C is p-proximal.

Proof. By Lemma 3.1 there exists a sequence {4, } < C and he L, such
that

(c) h,— h pointwise on X and
(d) pth—f)<lim, p(h,— f)=dist,(f, C).

In order to prove that he P,(f, C) it suffices to show that ~e C. By
hypothesis we have that (a) A;>; heL, or (b)\/ 7  heL,. Since the
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other case is similar, we assume (a). Since AY_, 7. | Apo; #x as m— o0,
and C is order closed, we have that A} ,h,eC. By a well-known
inequality |AZ_, Al <Ih,|+ A1 hel, so for each n, A, hcel,.
Because C is order closed and A7_, kL A, by 88 m — o0, we have that
Ni—,heC. The proof is now complete, since C is order closed and
AE=n b Th.

THEOREM 3.6. Let p be a left continuous function semimodular with
property (K). In addition let X = {x,}{, and let X be the o-algebra of all
subsets of X. If C is a nonempty order closed sublattice of L, and

(a) CeYor
(b) Cek,
then Cis ||-|| ,- proximinal.

Proof. 1Tt is easy to see that |||, is a continuous function modular with
property (K). Hence the proof is immediate by Theorem 3.5.

Exampii 3.7. Let L, be any modular function space such that pe %,
has property (K) and let

C={heL,: h>0,is nondecreasing }.
Then Ce %,

The next example shows the necessity of property (K} in Theorem 3.5

ExampLe 3.8. Let X=N, let X be the g-algebra of all subsets of X, and
let

2 k)]

p(h)=arc tan |A(1)| + 100 o
k=2

Furthermore let C={g,}° be the lattice of functions on X satisfying
g.(1Y=n,and g,(k)=1—1/nfor k> 1. Then define (k) =1 for every ke X.
All the hypotheses of Theorem 3.5 are satisfied except p does not have
property (K). For each g, in C we have that

100 2 1
p(f—g,)=arctan(n—1)+— 3 -

k=2

T
- as n-> 0.
2

Since

O<dist,(f, C)<p(f—g)ly as n—oo,

we have that dist,(f, C) < n/2. However for each g,eC, p(f—g,)>n/2.
Hence P,(f, C)= .
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It seems reasonable that in order for best approximants of a function f
to exist in a lattice C, the lattice must in some sense be closed. Surprisingly
the following theorem shows that C must not only be ||| ,-closed, but
p-closed as well. -

THEOREM 3.9. Let pe,, and let Cc L;, be an order closed lattice. If for
every order closed lattice DCL, and for every feL,, P,(f, D)+# &, then C

is p-closed.

Proof. First note that AC is an order closed lattice for each 4> 0.

Let {g,}°<=C, geL,\C, and 41>0 be such that p(4(g,— g) = 0. Then
dist (Ag, AC)=0. However p is a function modular, and since g#h
for every heC, p(lg—Ah)>0 for every heC, which implies that
P (4., AC)= . This contradiction shows that C is p-closed, completing
the proof.

This result has application in Section 4. The proof of the following
theorem is similar.

TueoREM 3.10. Let pe &, and let C<L,. If Py (f, C)# < for each
feL,, then Cis | -|| ,-closed.

SECTION 4

Recall that a function pseudomodular p is orthogonally additive if
p(f, Av B)=p(f, A)+ p(f, B) for disjoint 4 and B. The class of all
orthogonally additive function pseudomodulars include such important
pseudomodulars as Lebesgue, Orlicz, and Musielak-Orlicz pseudo-
modulars. For such pseudomodulars, we can obtain more general existence
theorems, but first we need a somewhat technical lemma.

LemMa 4.1. If pe @R, is orthogonally additive and if f, f,, and f,e L,,

then
p(f —f1 A ) +p(f=fiv L2)=p(f—f1)+p(f = 1)

Proof. Define X, = {xeX: fi(x) = fo(x)} and X,=X\X,. The follow-
ing computation completes the proof of the lemma:

p(f=fin ) +p(f=fiv L2)=p(f=Fi A fas X1)+P(f—f1 A fa. X5)
+p(f=fiVv Lo, X))+ p(f = fi V f2, X5)
=p(f—f2, X))+ p(f— 11, X3)
+p(f — f1, X0)+ p(f = f2, X3)
=p(f = f1)+p(f—12)
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THEOREM 4.2. If peR, is orthogonally additive and has property (K)
and if Cc L, is a nonempty order closed lattice, then C is p-proximinal.

Proof. Fix arbitrary feL,. If dist,(f,C)=m,, then P,(f,C)=C
hence without loss of generality we may assume that there exists @ >0 such
that

(a) dist,(f,C)=a<m,.
Let {£,}; < C satisfy
(b)Y p(f—h,y<a+ (1/2") for each n.
k and then define g,=A> k. For

Whenever k >n, define gk=A%_, 4, 2k

ve X, let A(x) =lim inf, A,(x).
Fix two natural numbers k> n. Then for each j=n, by Lemma 4.1, we
have that

() p(f—ginhy)+p(f—givh)=p(f—g)+plf—hi)
y (b) and since g v h;, ;€ C, we have that

1 ) 1
P(f—hj+1)<a+§717<P(f—g£ v hj+1)+'27:f-

After combining this with (¢) we obtain

p(f—ginh ) +p(f—glv hiy)

_ , 1
<p(f—gly+plf—glv hj+1)+§j—+7.

Consequently we have for n < j<k that

pUf =g V=p(F =g A ) <pUf— &)+ 553

Applying this repeatedly for j=n, ..., k, while noting that gi,=1#,, we obtain

k+1

1 1
pf =g <p(f—g)+ L H<p(f—h)+m<at s

n+1

-

This proves that
1
lim inf p(f — g5*") <a+ 37,
k

but
f—gt'>f—-g, as k- oo
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hence by Lemma 1.11(a),

1
p(f—g)<a+ =T <"M, for sufficiently large .

By Proposition 1.18(c), f — g,,, and hence g, € L, for sufficiently large 7.
On the other hand C is an order closed lattice in L, and gk | g, as
k — o0; hence g, € C for sufficiently large #n. By Lemma 1.11(a),

(d) p(f—h) = p(lim,(f— g,)<liminf, p(f — g, ) <a<m,.

Furthermore g,= A2, h;1liminf, h,=h. By Proposition 1.18(c) f—4,
hence he L,. Therefore, since C is order closed, we have that 2e C. This
along with (d) completes the proof of the theorem.

We wish to extend the previous result in the following sense. Consider a
sequence of orthogonally additive function pseudomodulars p, and p=
sup p,. Examples show that p need not be orthogonally additive; however,
Theorem 4.5 shows the existence of best approximants for such p.

LemMA 4.3. Let {p,}7 =R, be a family of orthogonally additive func-
tion pseudomodulars, such that N, = A, for all k and m and suppose that
p=sup, p,€A,. (See 0.16.) Let e L,\C and let C be a nonempty lattice in
L,, such that {p,} is increasing on f — C. That is

(@) puf—8)<puii(f—g)  foreachn and every geC.
If h,e P,(f, C) for each n, h=1liminf, h, and

(b) pf—h,)=dist, (f,C)<d,  foralln,
then p(f — h) <lim inf, J,.

Proof. By Lemma 4.1 and then by (b) we have that for every ge C and
every n,
Pulf —hy A )+ Pl =, v 8)=pu(f = h,)+pu(f— 8)
CSplf—hav )+ pulf - 2)

and hence that p,(f— 4, A g)<p.(f— g) for every ge C.

Using this  and the monotonicity of {p,};° repeatedly yields that for
k>n, ’

(c) pn<f—j/=/\nhj)<pn+1(f— /k\ h;>

Jj=n+1

<pn+2<f— A h,-)<pk(f—hk).

j=n+2
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We now apply Lemma 1.11(a) and (c) to obtain

@ ou(r= A k)=, im( f—j/i\n )

j=n
k
<liminfp, <f~ A hj)
k ;
j=n

< liminf p, (f — A4, ) <lim inf §,.
x k

We now obtain the desired result by Lemma 1.11(a), the monotonicity of
{p,}¥ and (d) as follows:

p(f—h)= SUp i (f—lim K hj)

n j=np

<sup liminf p, (f— A\ hj>
Jj=n

k n

< sup liminf p, (f— A\ hj> <lim inf §,.
k n k

J=n

LemMa 44. Let {p,} =R, be a family of function semimodulars with
property (K). If N, =N, for all k and m and p =sup, p,€ &, then p has
property (K) as well.

Proof. By hypothesis, A4, =4, for each n; hence M(X,Z, p,)=
M(X, 2, p)= M for all n. Thus for each Ee Z\.A4,,

(a) m,(E)= sup p(g, E)=sup sup p,(g, E)

geM geM n

=sup sup p,(g, E)=supm, (E).

n geM
In particular
(b) supm, =m

n

By (a), Proposition 1.18, and (b) we obtain that

p-

m,(E)=supm, (E)=supm, =m,,

which shows via Proposition 1.18 that p has property (K).

Applying Lemmas 4.3 and 44 we can prove the following existence
theorem.

640/63/3-7
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THEOREM 4.5. Let {p,}7 <R, be a family of orthogonally additive
Jfunction pseudomodulars with property (K) and let p=sup, p,e #,.

(a) If C, a nonempty lattice in L,, and f € L,\C are such that {p,}T
is increasing on f —C, then P,(f, C)# .

(b) Moreover if h,eP,(f,C) for each n, h=liminf, h, and
dist,(f, C)<m, then he P,(f, C).

Proof. Let us prove (b) first.
Define 6, =dist,, (f, C) for each n. By Lemma 4.3 and the definition of p,

(¢) p(f—h)<liminf, 5,<dist,(f, C).

Therefore by hypothesis, p(f —h)<m,. By Lemma 4.4, p has property
(K), so Proposition 1.18(c) applies, yielding that f—h and hence heL,.
Since C is order closed, #e C. This and (c) complete the proof of part (b).

Now for the proof of (a). If dist,(f, C)=m,, then P,(f, C)= C; hence
without loss of generality assume that dist,(f, C)<m,. There exists
h,e P, (f, C) by Theorem 4.2 for each n. Hence if we define 4 =lim inf, £,,,
the proof of (a) is complete by part (b).

If p is an orthogonally additive function modular, then although || |, is
a function modular, it is not necessarily orthogonally additive. We cannot
therefore apply Theorem 4.2 directly in proving the existence of best
[ - Il ,-approximants; however we can apply Lemma 4.3.

THEOREM 4.6. Let p € &, be orthogonally additive and have property (K).
If Cc L, is a nonempty order closed lattice, then C is | -| ,-proximinal.

Proof. Let feL,. If feC, the assertion obviously holds; hence without
loss of generality we assume f ¢ C.

Denote é =dist. (f, C). Because C is order closed, Theorems 4.2 and
3.9 apply to yield that C is p-closed. Therefore 6 #0.

First suppose that é >m,. By Proposition 1.16, for every ge C,

m,<o< inf [ f—wl, <|lf—gl, < sup [wl,<sup p(w)<m,.

weC wel, welL,

Thus || f— gll,=m, for every ge C and C=P (/. C)

Now we assume that § € (0, m,). Fake {g,}° = C such that || f— g,|| | 6.
For each n define 6, = || f — g,ll , + (1/n) and p, by p,(g) = p(g/d,). Clearly
each p, is a function semimodular. For each Ee X, m, (E)=m,(E); hence
by 1.18(a), each p, has property (K). Note that by the definition of L,,
L,=L, . Since 1/5,11/6 as n— oo, by the left continuity of p,

sup p,(g)=supp (6&) =p <—§) foreach gelL,.
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Moreover, for every n and for each ge C,

< f—g
5n+1

Ii;s:—g ’ thus pn(f—g)<pn+l(f_‘g)’

that is, {p,} is nondecreasing on f— C.
By Theorem 4.2 for every n, there exists ,e P, (f, C). We define /1=
lim inf, 4,,. For each n,

inf {oc: p (f;g") < Ot} =|f— gull, <38,
hence p, (f— g.)=p({(f— g,)/8,) <4,. From this it now follows that

pulf —h,)=dist, (f, C)<pu(f — 8.} <O

Hence by Lemma 4.3

sup p,(f —h) = p(f —h)<liminf 5, = &.

This means that for every »

(a) p(57)=pitr-mes

Recall that as n — o0, 1/6,11/6; hence by the left continuity of p,

(5 ()

This combined with (a) yields that

(b) o (f—;’l)skm,,,

and hence || f —h|,<é<m,. From (b) and Prop. 1.18(c) we obtain that
(f—h)/d, and hence he L,. Since C is order closed, 2 e C. This and (b)
imply that he Py, (f, C), completing the proof.

SECTION 5

In order to state a uniqueness theorem, let us first recall the following
definition [237].
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DermviTiON 5.1, A function modular p is called strictly convex if p is
convex and if whenever A, ge L, satisfy

p (h + g) _ph)+p(g)

p(h)=p(g)  and 5 5 ,

then = g p-a.c.

ExaMPLE 5.2. An Orlicz modular p, is strictly convex if and only if ¢
is strictly convex [23].

THEOREM 5.3. Let pe4R, be strictly convex and let C<L, be a
nonempty convex lattice that is order closed in L,. Let f€ L, be such that
dist,,(f, C) < co. Then the set P,(f, C) consists of at most one element.

Proof. Assume that P,(f, C) contains g and A. That is
p(f—g)=p(f —h)=dist,(f, C).

By the convexity of p,

— —h — —h .
p(f g;f ><p(f2 g)+p(f2 )=dlstp(f, o).
However,
g+h
7 ¢
SO
dist, (/; C)Sp(j:_g—-—;—fi),
és well. Thus
f—g+f=h\_plf—g) plf—h),

hence by the strict convexity of p, g =4 p-a.e., completing the proof.
In the next result we compare the sets of best p- approxxmants and best
I -1l ,-approximants.

THEOREM 5.4. Let peR,,, let fe L, and let DL, be a nonempty set
such that

(i) o=dist. (f, D)>0, and
(i) Py, D)#D.
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Then

(@) OP,(f/3, D[6)= Py, (f, D) and
(b) if By_¢>1/0 for each g€ D, then 3P ,(f/5, D/8)= P, (f. D).

Proof of (a). Suppose g/d € P,(f/d, D/5). Then

(C) p(fgg><p<%—h> for each hEPHAHp(f; D)

Furthermore |f—hl,=d for each he Py (f, D), hence by the left
continuity of p,

(d) p<£§£><5 foreach hePy, (f, D).

Together (c¢) and (d) show that p((f—g)/8)<dé and hence that
I f— gll, <0, which completes the proof.

Proof of (b). Let heP(f,D). By (a) it suffices to show that
hedP,(f/6,D/6). To this end let g be any function from D. Hence
| f—gll, = 0. Take 0 <y 19, then 1/y | 1/5. By hypothesis 1/ye [0, f,_,), so

by (1.5),
(EYn(59) e
Now, since y <0 < | f— gll,, we have that p((f — g)/y) > 7. Therefore
d=limy<limp (]::é):p (f————g\
Y o )
By the left continuity of p we have that

(i) < 1=

and finally for each ge D,
ol rnsn()
< <lf=hl,=d<p|\—=1,
p( 5 P\, If=Al, pk 5
that is h/d € P,(f/0, D/5), as desired.

Remarks. (a) Observe that whenever f,_ =00, 0P, (f/5, D/6)=
Py, (f, D). For example, if p is a Musielak-Orlicz modular satisfying 4,
(see [23]), orif f—DcE,.
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(b) If B, ,<1/8, then the inclusion in (a) cén be strict.
(c) If B,_,> 1/, then we conclude from Theorem 5.4 that

Py (f,C)#  implies P, (g, g) # .
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