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In this paper we consider the existence of best approximants in modular function
spaces by elements of sublattices. Modular function spaces are the natural
generalization of L p , p > 0, Orlicz, Lorentz, and Kothe spaces. Let p be a
pseudomodular, L p the corresponding modular function space, and C a sublattice
of L p • Given a function f E L p we consider the minimization problem of finding
hE C such that p(f - h) = inf{f - g: g E C}. Such an h is called a best approximant.
Problems of finding best approximants are important in approximation theory and
probability theory. In the case where C is L p (f!4) for some IT-subalgebra f!4 of the
original (I-algebra, finding best approximants is closely related to the problem of
nonlinear prediction. Throughout most of the paper we assume only that p is a
pseudomodular and except in one section, we do not assume p to be orthogonally
additive. This allows, for instance, application to Lorentz type L p spaces. If p is a
semimodular or a modular, then L p can be equipped with an F-norm 11·11 p and one
considers the corresponding F-norm minimization problem. This paper gives
several existence theorems relating to this problem, a theorem comparing the set of
all best p-approximants with the set of all best 11·llp-approximants and a uniqueness
theorem. © 1990 Academic Press, Inc.

INTRODUCTION

In this paper we consider the existence of best approximants in modular
function spaces by elements of sublattices. Modular function spaces are the
natural generalization of L p , p > 0, Orlicz, Lorentz, Marcinkiewicz, and
Kothe spaces. In Preliminaries, we give some basic concepts and facts of
the theory. For further information the reader is referred to [10-12]. In
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[23], Musielak gives a thorough exposition on the general theory of both
modular spaces and generalized Orlicz spaces. For information abol1 t
classical Orlicz spaces see [16, 18, 30], and for some generalizatIons see
[8,9,29]. The theory of modular spaces has proven to be useful in
approximation theory [14, 15, 20-22, 24,25], as wen as in interpolation
theory [5,12,17], and in operator theory [6,13].

Let p be a function pseudomodular satisfying the Fatou property (see
the remark after Definition 1.5), L p the corresponding modular function
space, and C a sublattice of L P' Given a function f E L p' we consider the
minimization problem of finding hE C such that p(f - h) = inf{j - g:
gE C}. Such an h is called a best p-approximant. For example, if L p is an
Musielak-Orlicz space (see Example 0.11), this problem is the problem 01
finding h E C such that

f q>(x, f(x) - h(x)) dJ1(x) = inf f q>(x, f(x) - g(x)) dJ1(X).
gEe

Problems of finding best approximants are important in approximation
theory and in probability theory. In the case where C is L p (&6) for some
a-subalgebra &6 of the original a-algebra, finding best approximants is
closely related to the problem of nonlinear prediction {see, e.g., [3]). For
instance, if &6 is the a-subalgebra generated by {Bd, this problem of
finding best approximants can be stated as follows: Given a random
variable f E L p , find a function h, constant on each Bkl such that p(f~
is minimal. In many cases p(f - h) represents the loss of information or the
average error suffered when f is replaced by h.

Best p-approximants are known by many different names in specific
situations. When C is L p (&6), for a a-subalgebra &6, best approximants in
L 2 are known as conditional expectations; in Lp , for p> 1, as p"predictors
[1]; and in L 1 as conditional medians [27]. When C is an order closed
sublattice of L p , they are known as p-means [2], and in Orlicz spaces as
q>-approximants [19]. In this paper p is assumed to be a pseudomodular;
hence our results are applicable in all the above spaces as well as in many
others. For example, p need not be of symmetric type, so our results
applicable in Musielak-Orlicz spaces. Moreover, except in parts of
Section 4, we do not assume p to be orthogonally additive. This allows, for
instance, application to Lorentz spaces.

If p is a semimodular or a modular, then L p can be equipped with an
F-norm 11·11 p (Definition 0.6), and one considers the correspondingF-norm
minimization problem. This paper gives several existence theorems relating
to this problem and Theorem 5.4 compares the set of an best
p-approximants with the set of all best II ·11 p -approximants. Let us
emphasize that best approximants are usually not unique; however,
Section 5 gives some exceptions.
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The existence theorems presented in this paper can be used for proving
some convergence results that are closely related to the theory of
martingales. Moreover, by using the existence of best approximants we can
describe some properties of modular function spaces. Sets of best
approximants in Musielak-Orlicz spaces are described in [7].

PRELIMINARIES: MODULAR FUNCTION SPACES

Let us begin with basic definitions and well-known properties of modular
function spaces. Before giving the definition of a function modular let us
first recall the following.

DEFINITION 0.1 [23]. Let V be a vector space over IR.

(a) If p: V - [0, IX)] satisfies

(1) p(O)=O,

(2) p( -v)=p(v) for every VE V, and

(3) p(rxu+f3v)~p(u)+p(v), for every U,VEV whenever rx,f3~O

and rx + f3 = 1,

then p is a pseudomodular.

(b) If a pseudomodular p satisfies

(4) v = 0, whenever p(Jlv) =°for all A> 0,

then p is a semimodular.

(c) If a semidomodular p satisfies

(5) v=O, whenever p(v)=O,

then p is a modular.

Let X be a nonempty set, I a a-algebra of subsets of X and [JjJ c I a
b-ring such that

(i) [JjJ is an ideal in I, that is En A E fJIJ, whenever E E fJIJ and A E I,
and

(ii) there exists a nondecreasing sequence of sets {Xk } f' c fJIJ such
that X = U%"= 1 Xk ·

By Iff we denote the linear space of all simple real valued functions of the
form

n

s= I rk l Ak ,

k=l
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where each rk E IR, {A k } ~ C gJ is a disjoint family and 1A denotes the
characteristic function of a set A. By

Moo (X, 1:, gJ)

we mean the set of all functions f: X ~ [ - 00, 00] such that there exists a
sequence of simple functions from Iff converging to f pointwise. Similarly

M(X, 1:, gJ) = U EMoo (X, 1:, gJ): If(x)1 < CfJ for each x EX}.

DEFINITION 0.2. (Cf. [10,11,12]).

(a) A mapping p: Iff x X ~ [0, 00] is called a function pseudomodular
if it satisfies the following properties:

(1) p(O, A) =0 for each A E1:.

(2) p(f, A)~p(g, A), if If(x)1 ~ Ig(x)1 for every xEA, and A EJ.:.

(3) p(f,'): 1:~ [0, 00] is a O"-subadditive measure for each f E Iff.

(4) p( IX, A) ~ 0 whenever IX ~ 0 for every A E gJ. (Here IX denotes
the constant function with value IX.)

(5) P(IX,An)~O for every IXEIR, whenever Ant 1,6 and {An};x'cgJ.

(b) A function pseudomodular p is called a function semimodular if it
satisfies the following property:

(6) There exists IXa ~ 0 such that p ([3, A) = 0 for every [3 E IR when­
ever A E gJ and p(IX, A) = 0 for some IX> IXa.

(c) A function semimodular p satisfying (6) above with O(a = 0 is
called a function modular.

(d) The definition of p is then extended to all functions
f EM00 (X, 1:, gJ) and E E1: by defining that

p(f, E) = sup{p(g, E): gE Iff and Igi ~ IfI on E}.

For the sake of simplicity, p(f) is written in place of p(f, X).

Some examples are given at the end of this section.

THEOREM 0.3 [10]. Each function pseudomodular (respectively function
semimodular and function modular) is a pseudomodular (respectively semi­
modular and modular).

Two important basic notions are those of p-null sets and the relation of
equality p-a.e. They play the same role as sets of measure zero and equality
a.e. in LP and Orlicz spaces.
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DEFINITION 0.4. Let p be a function pseudomodular.

(a) A set A E E is said to be p-null if p(g, A) = 0 for every g E It.

(b) A property P(x) is said to hold p-almost everywhere, (p-a.e.), if
the set

{x E X: P(x) does not hold}

is p-null.

(c) The set of all p-null sets from E is denoted by ~.

As usual we identify any pair of measurable sets whose symmetric
difference is p-null as well as any pair of measurable functions differing
only on a p-null set. With this in mind we make the following definition.

DEFINITION OS We define

M(X, E, [lJ, p) = {J EM <Xl (X, E, [lJ): f is finite p-a.e.},

where each f E M(X, E, [lJ, p) is actually an equivalence class of functions
equal p-a.e.

Where no confusion exists M or M(X, E) is written in place of
M(X, E, [lJ, p).

DEFINITION 0.6 [10]. Let p be a pseudomodular.

(a) A modular function space is the vector space Lp(X, E), or briefly
L p , defined by

(b) If p is a function semimodular, then the formula

Ilfll p = inf{a> 0: p(fla) ~ a}

defines the p-norm in L p.

THEOREM 0.7 [10, 11, 12]. Let p be afunction semimodular.

(a) (L p' II ·11 p) is an F-space, (i.e., II ·11 p is an F-norm and the metric
space L p with d(j, g) = lif - gil p is complete).

(b) Ilfn II p~ 0 if and only if p(afn) ~ 0 for every a > O.

We also use another type of convergence in L p .

DEFINITION 0.8. Let p be a pseudomodular.
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(a) We say Un} r" p-converges to f and write fn !. f, if there exists
A> 0 such that P(A(fn - f)) ~ 0 as n ~ 00.

(b) A set Dc L p is p-closed if fED, whenever f E L p and fn !.... f for
some Un} r" cD. Note that by Theorem O.7(b), 11·11 p-convergence implies
p-convergence and consequently a set is 11·11 p -closed if it is p-closed.

DEFINITION 0.9. Let p be a function pseudomodular.

(a) p is left continuous if for each f E M,

p(Af) i p(f) as Ap.

(b) p is right continuous if for each f EM,

p(Af)! p(f) as A! 1.

(c) p has the Fatou property if p(fnH p(f), whenever 1/',1 i If I p-a.e.
for f, fn EM.

PROPOSITION 0.10 [10].

(i) A function pseudomodular p is left continuous if and only if p
satisfies the Fatou property.

(ii) If p is a left continuous function semimodular, then

(a) Ilfnllp i Ilfll p whenever Ifni i If I p-a.e.

(b) II· lip is afunction modular, that is p: t! x E ~ [0, 00 ] defined by

p(f, A) = Ilf l All p

is a function modular, sup{p(g, A): gEt! and Igl,;;;; IfI on A} = IIflAllpfor
each fEM and L p = L p•

(c) p(f) ,;;;; 1 if and only if Ilfll p ,;;;; 1, and

(d) p(f/llfll p )';;;; Ilfll p •

This section is concluded by some examples.

EXAMPLE 0.11 (The Musielak-Orlicz Modular). See, e.g., [23]. Let

p(f, A) =f <p(x, f(x)) dfl(X),
A

where fl, a a-finite measure on X, and <p: X x IR ~ [0, (0) satisfy the
following.
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(a) <p(x, u) is a continuous even function of u, nondecreasing on JR +,

such that <p(x, 0) = 0, <p(x, u) > °for u =I- 0, and <p(x, u) 4' 00, as u 4' 00.

(b) <p(x, u) is a measurable function of x for each u E JR.

The corresponding modular function space is called a Musielak-Orlicz
space (or a generalized Orlicz space), and is denoted by L 'P. If <p does not
depend on the first variable, then L'P is called an Orlicz space. If
<p(u) = lu/ P, for P>O, then L'P is isomorphic to LP.

EXAMPLE 0.12 [4, 10]. Let

p(f, A) = sup f <p(x, f(x)) dll(X),
/lED A

where <p is as in Example 0.11 and Q is a family of positive measures such
that SUP/lED Il(X) < 00. Then p is a function modular.

EXAMPLE 0.13 (Lorentz type LP-spaces [4,10J). Let

p(f, A) = sup f If(x)IP dllr(X),
T:E!7 A

where 11 is a fixed o--finite measure on X, !!T is a family of measurable trans­
formations T: X 4' X, and

Then p is a function modular.

EXAMPLE 0.14. Let X = N, let I be the o--algebra of all subsets of N,
and let f!jJ be the 15-ring of all finite subsets of N. Let In = {I, 2, ..., n} and
define

p(f,A)=sUp~ I (e 1f(k)I_/f(k)l-l).
n n kE A nIn

Then p is a function modular.

EXAMPLE 0.15. Given a sequence of function semimodulars {Pk};",
such that ~k = ~m for each m and k, define

~ 1 Pk(f, A)
p(f,A)=L..2k l+ (fA)"

k= 1 Pk'

If we follow the convention that 00/00 = 1, then we obtain a function semi­
modular again.
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EXAMPLE 0.16. In the same situation as (0.15), define

p(f, A) = sup Pk(f, A).
k

345

P is a function semimodular if and only if

(a) SUPk Pk(a, Am) ~ 0 as Am! «P for each a E IR, where each Am E &>,

(b) SUPk Pk(a, A) ~ 0 as a~ 0 for each A E&>.

This construction is used in Section 4.

SECTION 1

The following notions are new and are of frequent use.

DEFINITION 1.1. If P is a nonzero function pseudomodular on X, we
define

mp(E) = sup{p(g, E): gEM} E [0, 00].

Remarks 1.2. (a) By convention mp= mp(X).

(b) If is' c Be M, then for each EEL,

mp(E) = sup p(g, E).
gEB

For example B could be L p'

(c) EEL is p-null if and only if mp(E)=O.

(d) If 00 denotes the constant function with value 00, then

for all E c J:.

DEFINITION 1.3. For any function f E L p , define

DEFINITION 1.4. Given f EM, f: X ~ IR, we define the function
rl: [0, PI] ~ [0, m p ] by

rl(t) = p(tf),

where by convention rl ( CIJ) = m p '

DEFINITION 1.5. Let &lm (respectively f!Ils and f!Ilp ), be the set of all nOn­
zero function modulars p (respectively semimodulars and pseudo­
modulars), such that for every f EM, r/ [0, PI] ~ [0, mpl is continuous.

640/63/3·6
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Remarks. (a) In this paper we usually assume that P E ~P' f7l" or ~m'
From this assumption it follows immediately that P is a left continuous
pseudomodular and therefore by Proposition 0.10 has the Fatou property.

(b) If p[> 1, then p(Anf)!p(f) whenever An! 1; i.e., P is right
continuous at f This does not mean that p is right continuous at all
functions (not even those from L p ). For instance, consider an Orlicz space
L'I' such that qJ does not satisfy il 2 • Then mp = 00 and p[ > 1 for some
functions (for example, bounded functions), while p[ ~ 1 for some other
functions [16].

PROPOSITION 1.6. Let p E ~p and! EM. Then! E L p if and only if P[ > O.

Proof Let! E L p; then peA!) ~ 0 as A~ 0 and consequently peA!) < m p
for A close to zero. (Recall: m p > 0.) Conversely, take! EM and assume
that p[ > O. Let 0 ~ An ---+ 0; then for n sufficiently large, 0 ~ An ~ p[ and by
the preceeding remark we have p(An!) = r[(An) ---+ 0, Le.,! E L p.

The above proposition immediately implies our next result, which is used
frequently throughout the paper.

EXAMPLE 1.8. In Musie1ak-Orlicz spaces, as defined in Example 0.11,
P E fllm and mp = 00.

EXAMPLE 1.9. If 'P: [0,(0) ~ [0, a] is strictly increasing and
continuous, with 'P(O) =0 and if PI is a Musielak-Orlicz modular, then
PE~m, where p(f)= 'P(PI(f)), and satisfies that mp=a. For instance, if
p(f) = PI(f)/(1 +PI(f)) (with the convention 00/00 = 1), then m p= 1.

EXAMPLE 1.1O. In Lorentz type LP-spaces (see Example 0.13 ),

p(f, A)= sup f !!(x)jP d,u,(x)
TE.:Y" A

is in ~m and m p = en.

The following result gives some veFsions of the Fatou property that we
use frequently. The proofs are standard and are omitted.

LEMMA 1.11. Let PE~p'

(a) Let gn ---+ g, as n ---+ 00, with gn' gE M and lim infn p(gn) = a. Then
p(g)~a. Furthermore ifa<mp, then gELp'

(b) If {gn}~eM and each gn?O then p(lim infn gn) ~lim infn p(gn)'
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DEFINITION 1.12. A subset C of L p is called a lattice if fl 1\ f2 E C and
fl v f2 E C, whenever fl' f2 E C. Recall that (fl 1\ f2)(t) = min {fl(t), f2(t)}
and (fl v f2)(t)=max{fl(t),f2(t)}.

DEFINITION 1.13. A set C c L p is called order closed in L p, if whenever
f E L p with {fn};x' c C such that fn i f or fn ! f, then f E C.

DEFINITION 1.14. We define 2?; to be the family of alllatticesC in L p

such that for any sequence {gd;x' c C, 1\':= 1 gk E L p ; and ~ to be the
family of all lattices C in L p such that for any sequence {gd ;x' c C,
V':=1 gkELp.

DEFINITION 1.15. (a) We understand the p-distance, respectively II· II p­
distance, from an f E L p to a set Dc L p to be the quantities

distp (f, D)=inf{p(f-h): hED}

and

dist ll . llp (f, D) = inf{ Ilf - gil p: gE D}.

(b) The set of all best p-approximants, respectively best 11·11 p­
approximants, of f with respect to D are denoted by

Pp(j, D) = {gE D: p(f - g) =distp (f, D)}

and

PII'llp(f, D)= {gED: Ilf - gllp=dist ll . llp (f, D)}.

(c) If D satisfies Pp(f,D)=I=¢J, respectively P II .llp(f,D)=I=¢J, for every
f E L p, we say D is p-proximinal, respectively 11·llp-proximinal (see, e.g.,
[28] ).

PROPOSITION 1.16. Let p E fYis and let V be any vector subspace of L p'

Then

sup Ilhllp = sup p(g).
hEV gEV

Proof In order to prove that SUPhEV Ilhllp~supgEvp(g) we may
without loss of generality assume that

sup p(g) = a < 00.
gE V
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Let g E V. Since V is a vector space, g/rx E V and hence

p(g/rx) ~ sup p(h) = rx.
hE v

By the definition of 11·11 p it follows that II gil p ~ rx = SUPhE v p(h) and because
we chose g arbitrarily from V,

sup II gil p ~ sup p(h).
gEV hEV

In order to prove that SUPhEV Ilhllp;::suPgEvp(g), let rx=SUPhE V Ilhllp.
Define a left continuous function semimodular Pl by Pl(f) = (l/rx) p(f). It
is well known that Ilgll pl = (l/rx) Ilrxgll p for every gE V. From this it follows
that

11.
sup II h II PI = sup - II rxh II p= - sup II h II p= 1
hEV hEVrx rx hEV

and that l/llhllpl;:: 1 for every hE V. Therefore Pl(h) ~ Pl (h/llhllpl) for every
hE V. By the left continuity of Pb Pl(h/llhllpl)~ Ilhllpl for every hE V.
Combining these we obtain that

for every hE V. Thus

sup p(h)~sup IliXhllp=sup Ilhllp,
hEV hEV hEV

which completes the proof.

PROPOSITION 1.17. Let P E fli" let f EM, and let V be any vector
subspace of L p'

(a) lfllfllp<mp, thenfELp.

(b) lfllfllp;::mp, then Ilfllp~supgEvllglip'

Proof of (a). Since P is left continuous, it follows that

Hence it follows from Proposition 1.7, that f EL p •

Proof of (b). Immediate from Proposition 1.16.
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PROPOSITION 1.18. If P E f!ltp, the following assertions are equivalent:

(a) If EE1:\At;" then m/E)=mp.

(b) If tffcBcM, then SUPgeBp(g,E)=sUPheBp(h) for every
E E 1:\.AI;,.

(c) IffEMoo and p().,f) <mpfor some ),,>0, thenfEL p •

Proof Proof that (a) and (b) are equivalent is easy and is omitted. See
Remark 1.2.

To prove that (c) follows from (a), consider f EM"" such that p().,f) < mp

for some )., > O. Denote

E= {x: If(x)1 = oo}.

By Proposition 1.7 it suffices to show that E EAt;,. By the definition of
mp(E)

hence by (a), E E .AI;,.
In order to prove that (a) follows from (c), suppose that E E 1: and that

mp(E) < rn p. Define

f(X)={:
if XEE

if xEX\E.

Then p(f) = p(f, E) = mp(E) < m p and by (c) f E L p, which forces f to be
finite p-a.e. This shows that E E .AI;" completing the proof.

DEFINITION 1.19. If p satisfies any of the equivalent statements in
Proposition 1.18, p is said to have property (K).

Most interesting function pseudomodulars have property (K); for
instance, Examples 0.11-0.14. See also Lemma 4.4. In (3.8) we present an
example that does not have this property.

SECTION 2

In this section we consider the lattice eeLp to be the subspace of all
gj-measurable functions in L p , where gj is a a-subalgebra of 1:. If t p isLP
or L rp and best approximants are unique, then the operator P that assigns
the unique best approximant to each f E L p is known as the predIction
operator. See [1,26].
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DEFINITION 2.1. Let Y c X, let Y E I, and let f!J c I be a a-algebra of
subsets of Y such that there exists a sequence of sets Yk E f!J n r!J> with Y =

Uf= 1 Y i · For each hE M( Y, f!J), we define

h(x)= {~(X) if XE Y

if XEX\Y.

We consider M( Y, f!J) c M(X, I) by the embedding h --+ h.
Define p (J4: f!J x c&"( Y, f!J) --+ [0, 00] by

p(J4(h, E) = p(h, E) for hE c&"( Y, f!J) and E E f!J.

We call LpffI(Y, f!J) a modular function subspace of Lp(X, I).

LEMMA 2.2. Let p E YIp. If L pffl( Y, f!J) is a modular function subspace of
Lp(X, I), then

(a) P(J4 E YIp,

(b) p(J4(h) = p(h) for each hE M( Y, f!J), and

(c) Lpffl(Y, f!J)cLp(X, I).

(d) If hE M( Y, f!J) and hE Lp(X, I), then hE L Pffl( Y, f!J).

The proof of this lemma is standard and is omitted.
In the next result we characterize f!J-measurable functions in term of

f!J-atoms. By a f!J-atom, we mean a nonempty set A c f!J such that
whenever a nonempty set DcA is f!J-measurable, D = A. The proof is also
standard and is omitted as well.

LEMMA 2.3. Let Y = Uf= 1 Ab where f!J is a a-algebra on Y and each A k

is a f!J-atom. Then given h: Y --+ IR, hE M( Y, f!J) if and only if h is constant
on the f!J-atoms of Y.

We are now ready to present our first existence result.

THEOREM 2.4. Let p E &lp and let L Pf./ Y, f!J) ::j:. 0 be a modular function
subspace of Lp(X, I) such that Y = Uf= 1 A k , where each A k is a f!J-atom.
Then whenever f E Lp(X, I) is bounded on each Ab

Proof Suppose that f E Lp(X, I) is bounded on each A k . If

distp(f, L Pffl( Y, f!J)) = sup p(w),
weLp
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p(f-g)= sup p(w)
weLp

and hence

We may therefore assume that

(a) distp(f, L p;w( Y, ,qg)) < sup p(w).
WELp

For each n, choose hn E L p;w( Y, ,qg) so that

Since hn is ,qg-measurable, hn is constant on A k by Lemma 2.3.
We can choose, for every k, a subsequence {h~};:'~1 c {hn};:'~1 such that

for every k

and so that whenever y E A k either

or

as n --* 00

lh~(y) - f(y)1 i 00 as n --* 00.

These choices are made inductively. Given y E Ab the former choice is
made when {h~ -I(y)};:'~ 1 is bounded and the latter choice when it is not.
In this second case {h~(y)};;"= 1 is chosen as follows. By Lemma 2.3, if
{h~-I(y)};;"~ 1 is unbounded for some y E Ab it is unbounded for every
YEA k • Therefore, sincefis bounded on each Ab {h~-I(y)- f(Y)};;"=1 is
unbounded for every y E A k as well. In fact

(b) is unbounded.

Suppose {hf};:: l has been chosen from {h; - 1L': I' Since h~ _ 1 is constant
on A k and f is bounded on A k , {lh~_I(y)-f(y)I:YEAd has a
supremum, say [3. Now by (b) we can choose h~ E { h; - 1 } j': l' so that

inf Ih~(y)-f(y)I>[3.
YEAk
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Ih~(y)- f(y)l?; Ih~_l(Y)-f(y)1

completing the induction.
Denote

for every y E A ko

and H = Y\G. Note that G and HE f!J.
Define gn by the diagonal sequence, that is gn = h~. Define fn: Y --+ IR by

if yEG

if YEHnA k

and finally h: Y --+ IR by

and

and

Each fn E M( Y, f!J) by Lemma 2.3 and hence

(c) hE M( Y, f!J),

because h = limn fn'
For each n, gn = hmn for some mn?; n; hence for y E A k and each n?; k we

have that

Ifn(Y) - f(y)1 = {lgn(Y) -f(y)1
Igk(Y) - f(Y)1

:( Ign(Y)- f(y)1

= Ihm/y) - f(y)l.

From this it follows that for every y E Y,

if yEG

if yEH

(d) lim inf Ifn(Y) - f(y)1 :( lim inf Ihm/y) - f(y)l.
n n

Now by (d) and Lemma 1.11(b),

(e) p(h - f) = p(/h - fl) = p(lim inf lIn - fl)
n

:( p(lim inf Ihmn - fl ) :( lim inf p( Ihmn - fl )
n n
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We claim that hE Pp(f, Lpfj/(Y' &6)). Recall (a); we are assuming
~istp(f, L p41(Y, &6))<mp. From this, Proposition 1.7, and (e) it follows that
h - f E Lp(X, L') and hence that

(f)

By (c), (f), and Lemma 2.2(d) we have that hE L Pfj/( Y, &6). This and (e)
yield hE Pp(f, L Pfj/( Y, &6)), completing the proof.

If p is any left continuous function semimodular then it is easy to check
that the F-norm 11·11 p E 9fm . (See Prop. 0.10(b).) Hence the following
theorem is an immediate corollary of Theorem 2.4.

THEOREM 2.5. Let p be any left continuous function semimodular and let
L Pfj/( Y, &6) =f. r/J be a modular function subspace such that Y = U;;'= 1 A{o
where each A k is a &6-atom. Then whenever f E Lp(X, L') is bounded On each
A{o PII.llp(f,Lpfj/(Y,&6))=f.r/J.

The following are simple examples of spaces where Theorem 2.4 can be
applied to show the existence of a best approximant. This existence is often
not evident a priori.

EXAMPLE 2.6. Let X = Y = IR, let &6 the a-algebra generated by
{[n, n + 1): n E Z}, let p be any function pseudomodular, and let f be any
continuous function on IR. Then by Theorem 2.4 there exists a best
p-approximant of f by a function constant on each interval en, n + I).

EXAMPLE 2.7. Let X= 1'\1; let p(h) = I,;;'= 1 cp(h(k)), where cp is an Orlicz
function (for example p(h) = I,;;'= 1 Ih(k )IP); and let Y = {I, 2, 3, ..., 300}. If
we define L' to be all subsets of X and &6 to be all subsets of Y, then for
any f E Lp(X, L') we can apply Theorem 2.4 to obtain that g E L<p( Y, &6)
(i.e., g(k)=O, for k>300), such that

p(f - g) =inf{p(f -h): hE L<p(Y, &6)}.

(Clearly g(k)=f(k) for k= 1, 2, ..., 300 and zero otherwise.)

EXAMPLE 2.8. Modify example (2.6) above by taking &6 to be the
a-algebra generated by {{l, 2, 3}, {4, 5, 6}, ..., {298, 299, 300}}. Given
f E Lp(X, L'), there is by Theorem 2.4, a best p-approximant of f by a
function constant on each set {I, 2, 3}, {4, 5, 6}, ..., {298, 299, 300} and
zero otherwise.

EXAMPLE 2.9. Let Y = X = 1'\1, let L' be the a-algebra of all subsets of X,
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and let !!J be the a-algebra generated by {{ 1}, {2, 3}, {4, 5, 6},
p, 8, 9, 1O}, ... }. For each n define the probability measure Jin by

for k=1,2, ...,n

for k=n+ 1, n+2, ...

and then p by

00 1 n

p(h) = sup f Ihl dJin = sup L Jin({k}) Ih(k)1 =sup- L Ih(k)l·
n x n k~ 1 n n k~ 1

Then given f E Lp(X, L'), there is by Theorem 2.4, a best p-approximant of
fby a function constant on the sets {{1}, {2, 3}, {4, 5, 6}, p, 8, 9, 1O}, ... }.

SECTION 3

In most of this section we assume X to be a countable set. Under this
additional hypothesis we prove several theorems on the existence of best
p-approximants. Among these is a theorem about modular function
subspaces in which we eliminate the hypothesis of f being bounded on
!!J-atoms. We also obtain existence for order closed lattices and then
conclude with an interesting consequence of having existence.

LEMMA 3.1. Let pEfllp have property (K). If X={xd;x', L' is the
a-algebra of all subsets of X and C c L p is a nonempty sublattice of L p, then
for eachfELp, there exists a sequence {hn};x' c C and an hELp such that

(a) hn --+ h pointwise on X and

(b) p(h - f) ~ limn p(hn - f) = distp(f, C).

Proof Fix f E L p. If

distp(f, C)= sup p(g),
gELp

then

p(f - w) = sup p(g)
gELp

for each WE L p

and we may take h = hn to be any element of C. We may therefore assume
that

(c) distp(f, C) < sup p(g).
gELp
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Define D = C - j and note that

distp(f, C) = distp(O, D) = inf p(g).
gED
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Choose {wn} '{' C D such that

p(wn ) < distp(O, D) + lin for each n.

We claim that for each k, {I wn(xk)I}::'= I is a bounded set. If we suppose
otherwise, by passing to an appropriate subsequence, we may assume
Iwn(xk)! i 00 for some fixed k.

Let gELp • For sufficiently large n, Iwn(xk)! > !g(xk)l, which shows that

(d) sup p(gl {Xk}) = sup p(lwn(xk)!l {xkl)'
gE L p n

We can now obtain a contradiction as follows:

sup p(g)= sup p(gl{xk})
gE L p g E L p

=supp(lwn(xk)ll{xkl)
n

= lim p( IWn(Xk)1 1{Xk})
n

~ lim inf p(wn )
n

~ distp(O, D)

< sup p(g)
gE L p

property (K)

by (d)

monotonicity of p

by (c).

This contradiction establishes our claim and makes it possible, via a
diagonalization argument, to choose a subsequence {v n }'{' C {w n }'{' and to
define a function W on X, so that for each k, Vn(Xk) ~ w(xk).

We claim WE L p • Since each Vn = Wm for some m ~ n,

distp(O, D) ~ p(vn ) < distp(O, D) + lin,

which shows via Lemma 1.ll(a) that

(e) p(w) ~ limn p(vn) = distp(O, D) < SUPgEL
p

p(g) ~ m p '

Thus wEL p by property (K). (See 1.l8(c).)
By defining hn = V n + jfar all nand h = W + fwe immediately satisfy (a)

and (e) yields that

p(h - f) ~ lim p(h n - f) = distp(O, D) = distp(f, C),
n

satisfying (b).
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THEOREM 3.2. Let X = {Xk} '(', and let E be the (J-algebra of all subsets
of X. If PE!Ylp has property (K), then Lp(M(Y' PJ) is p-proximinal.

Proof By Lemma 3.1, there exists {h n } ELp(M(Y' go) and hELp(Y, E)
such that

(a) hn ---+ h pointwise on Y and

(b) p(h - f) ~ limn p(hn - f) = distp(f, C).

From (a) we see that hE M( Y, PJ) and by Lemma 2.2(b),

pf4(Ah) = p(Ah) ---+ 0 as At o.

THEOREM 3.3. Let p be a left continuous function semimodular, X =
{xd'(', and E the (J-algebra of all subsets of X. If p has property (K), then
Lp(M(Y' PJ) is 11·llp-proximinal.

Proof It is easy to see that 11·11 p is a continuous function modular with
property (K). Hence the proof is immediate by Theorem 3.2.

Theorem 3.2 is valid in the following example, although Theorem 2.4 is
not.

EXAMPLE 3.4. Let Y = X = N, let E be the (J-algebra of all subsets of X,
and let go be the (J-algebra {{evens}, {odds}, N, rjJ}. Given a probability
measure (Jl, X, E) define p(h) = L7:~ 1 <p(h(k)) Jl( {k}), where <p is an Orlicz
function. Then given f E Lp(X, E), there is by Theorem 3.2, a best
p-approximant off by a function constant on the evens and on the odds.

THEOREM 3.5. Let pE!Ylp, let X= {xk }'(', and let E be the (J-algebra of
all subsets of X. In addition assume that p has property (K), that C is a non­
empty order closed sublattice of L p, and that

(a) C E.5lj or

(b) C E~ (see Definition 1.14).

Then C is p-proximal.

Proof By Lemma 3.1 there exists a sequence {hn } C C and hELp such
that

(c) hn ---+ h pointwise on X and

(d) p(h - f) ~ limn p(hn - f) = distp(f, C).

In order to prove that hE P p(f, C) it suffices to show that hE C. By
hypothesis we have that (a)/\7:=lhkELp or (b)V7:~lhkELp. Since the
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as n -+ 00.

other case is similar, we assume (a). Since 1\7:~ 1 hd I\~= 1 hk as m -+ 00,

and C is order closed, we have that I\~= 1 hk E C. By a well-known
inequality 11\~~nhkl~lhnl+II\~~lhkl, so for each n, 1\~=nhkELp.

Because C is order closed and 1\7:=n hd I\~~n hk as m -+ 00, we have that
I\~~nhk E C. The proof is now complete, since C is order closed and

I\~~n hk i h.

THEOREM 3.6. Let p be a left continuous function semimodular with
property (K). In addition let X= {xdr", and let I.: be the (i-algebra of all
subsets of X. If C is a nonempty order closed sublattice of L p and

(a) CE2';or

(b) C E f£'"

then C is II ·11 p - proximinal.

Proof It is easy to see that II ·11 p is a continuous function modular with
property (K). Hence the proof is immediate by Theorem 3.5.

EXAMPLE 3.7. Let L p be any modular function space such that P E!Jip
has property (K) and let

C = {h E L p : h ~ 0, is nondecreasing}.

Then CE 2';.

The next example shows the necessity of property (K) in Theorem 3.5.

EXAMPLE 3.8. Let X = N, let I.: be the (i-algebra of all subsets of X, and
let

00 Ih(k)1
p(h) = arc tan Ih(l)1 + 100 I 7-·

k~2

Furthermore let C = {gn} r" be the lattice of functions on X satisfying
gn(l) = n, and gn(k) = I-l/n for k> 1. Then definef(k) = I for every kE X.
All the hypotheses of Theorem 3.5 are satisfied except p does not have
property (K). For each gn in C we have that

100 00 1 n
p(f-gn)=arctan(n-l)+-- L *-+-

n k=22 2

Since

as n -+ 00,

we have that distp(f, C) ~ n/2. However for each gn E C, p(f - gn) > n/2.
Hence P p(f, C) = 0·
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It seems reasonable that in order for best approximants of a function f
to exist in a lattice C, the lattice must in some sense be closed. Surprisingly
the following theorem shows that C must not only be 11·11 p -closed, but
p-closed as well.

THEOREM 3.9. Let p E fYlm and let C c L p be an order closed lattice. Iffor
every order closed lattice DCLp andfor every fEL p , Pp(f, D) #- 0, then C
is p-closed.

Proof First note that AC is an order closed lattice for each A> O.
Let {gn}r'cC, gELp\C, and A>O be such that p(A(gn-g)~O.Then

distp(Ag, AC) = O. However p is a function modular, and since g #- h
for every hE C, p(Ag - Ah) > 0 for every hE C, which implies that
P p(Ag , AC) = 0. This contradiction shows that C is p-closed, completing
the proof.

This result has application in Section 4. The proof of the following
theorem is similar.

THEOREM 3.10. Let pEfYls and let CcLp. If P II ' lIp(J, C)#-0 for each
fEL p, then Cis 11·llp-closed.

SECTION 4

Recall that a function pseudomodular p is orthogonally additive if
p(f, A u B) = p(J, A) + p(J, B) for disjoint A and B. The class of all
orthogonally additive function pseudomodulars include such important
pseudomodulars as Lebesgue, Orlicz, and Musielak-Orlicz pseudo­
modulars. For such pseudomodulars, we can obtain more general existence
theorems, but first we need a somewhat technical lemma.

LEMMA 4.1. If P E fYlp is orthogonally additive and if f, fl' and f2 E L p'
then

Proof Define XI = {XE X: fl(x) ~ f2(X)} and X 2= X\X I . The follow­
ing computation completes the proof of the lemma:

p(f - fl 1\ f2) + p(f - fl v f2) = p(f - fl 1\ f2' XI) + p(f -1> 1\ f2' X 2)

+p(f-fl v f2,X I )+p(f-fl v f2'X2)

= p(f - f2' Xd + p(f - fl> X 2)

+ p(f - fl' XI) + p(f - f2' X 2)

=p(f - fd + p(f - f2)·
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THEOREM 4.2. If p E f!Jip is orthogonally additive and has property (K)
and if C c L p is a nonempty order closed lattice, then C is p-proximinal.

Proof Fix arbitrary fEL p. If distp(f, C)=m p, then Pp(f, C)=C;
hence without loss of generality we may assume that there exists a ~ 0 such
that

(a) distp(f, C) = a < mp '

Let {h n } '(' c C satisfy

(b) p(f - hn) < a + (1/2n) for each n.

Whenever k ~ n, define g~ = /\;~n hj , and then define gn = /\t'o=on hj • For
:( E X, let h(x) = lim infn hn(x).

Fix two natural numbers k ~ n. Then for each j ~ n, by Lemma 4.1, we
~ave that

(c) p(f - g~ A hj+d + p(f - g~ v hj + 1 ) = p(f - g~) + p(f -hj + d·

By (b) and since g~ v hj + 1 E C, we have that

!\fter combining this with (c) we obtain

p(f - g~ 1\ hj + 1 ) + p(f - g~ v hj+d

. _ 1
<p(f - g~) + p(f - g~ v hj+ d + 2j + l'

Consequently we have for n < j <k that

Applying this repeatedly for j = n, ..., k, while noting that g~ =hn , we obtain

k+1 1 1 1
p(f - g~ + 1) <p(f - g~) + L 2j < p(f - hn) + 2n<a + 2n- l'

n+ 1

This proves that

1
lim

k
inf p(f - g~ + 1) <a + 2 n -1'

but
f - g~ + 1 -+ f - g n as k -+ 00;
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hence by Lemma 1.11 (a),

for sufficiently large n.

By Proposition 1.18(c), f - gn, and hence gn E L p for sufficiently large n.
On the other hand C is an order closed lattice in L p and g~! gn as

k -+ 00; hence gn E C for sufficiently large n. By Lemma 1.11 (a),

Furthermore gn =1\': n hi jlim infn hn= h. By Proposition 1.18(c) f - h,
hence hELp. Therefore, since C is order closed, we have that hE C. This
along with (d) completes the proof of the theorem.

We wish to extend the previous result in the following sense. Consider a
sequence of orthogonally additive function pseudomodulars Pn and P =
sup Pw Examples show that P need not be orthogonally additive; however,
Theorem 4.5 shows the existence of best approximants for such p.

LEMMA 4.3. Let {p n} ~ C Ylp be a family of orthogonally additive func­
tion pseudomodulars, such that ~k = ~m for all k and m and suppose that
P = sUPn Pn E ~s' (See 0.16.) Let f E L p\C and let C be a nonempty lattice in
L p' such that {pn} ~ is increasing on f - C. That is

(a) Pn(f - g) ~ Pn+ 1(f - g) for each n and every gE C.

If hnE PPn(f, C) for each n, h = lim infn hn and

(b) Pn(f - hn) = distpn(f, C) ~ bn for all n,

then p(f - h) ~ lim infn bw

Proof By Lemma 4.1 and then by (b) we have that for every g E C and
every n,

Pn(f - hn /\ g) + Pn(f - hn v g) = Pn(f - hn)+ Pn(f - g)

~Pn(f-hn v g) + Pn(f - g),

and hence that Pn(f - hn /\ g) ~ Pn(f - g) for every g E C.
Using this and the monotonicity of {Pn} ~ repeatedly yields that for

k>n,

(c) Pn (f -.A hi) ~Pn+l (f-. A hi)
j~n j=n+ 1

~Pn+2 (f -. A hi) ~Pk(f-hk)·
j=n+2
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We now apply Lemma 1.11(a) and (c) to obtain

(d) Pn (f - j~ hj ) = Pn (li~ (f - j~ hj ))

~limkinfPn(f-hnhj )

~ lim inf Pk(f - hk)~ lim inf bk.
k k
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We now obtain the desired result by Lemma 1.11 (a), the monotonicity of
{Pn}f' and (d) as follows:

p(f -h) =s~p Pk (f -li~/~n hj )

~ s~p limn inf Pk (f-j~ hj )

~ sup lim inf Pn (f- 7\ hj ) ~ lim inf Ok'
k n j=n k

LEMMA 4.4. Let {Pn} f' c 9f!s be a family of function semimodulars with
property (K). If At;,k = At;,m for all k and m and P= sUPn PnE 9f!" then P has
property (K) as well.

Proof By hypothesis, At;,n = At;, for each n; hence M(X, E, Pn) =
M(X, E, p) = M for all n. Thus for each E E E\At;"

(a) mp(E) = sup peg, E) = sup sup Pn(g, E)
gEM gEM n

= sup sup Pn(g, E) = sup mpJE).
n gEM n

In particular

(b)
n

By (a), Proposition 1.18, and (b) we obtain that

mp(E) = sup mpJE) = sup m pn = m p ,

n n

which shows via Proposition 1.18 that P has property (K).

Applying Lemmas 4.3 and 4.4 we can prove the following existence
theorem.

640/63/3-7
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THEOREM 4.5. Let {Pn} ~ cap be a family of orthogonally additive
function pseudomodulars with property (K) and let p = sUPn Pn Eas'

(a) !fC, a nonempty lattice in L p, andfELp\C are such that {Pn}~

is increasing on f - C, then P p(f, C) #- 0·
(b) Moreover if hnE P p/f, C) for each n, h = lim infnhn and

distp(f, C)<m p then hEPp(f, C).

Proof Let us prove (b) first.
Define bn = distp/f, C) for each n. By Lemma 4.3 and the definition of P,

(c) p(f -h) ~lim infn bn~ distp(f, C).

Therefore by hypothesis, p(f - h) < mp ' By Lemma 4.4, P has property
(K), so Proposition 1.18(c) applies, yielding that f -h and hence hELp.
Since C is order closed, h E C. This and (c) complete the proof of part (b ).

Now for the proof of (a). If distp(f, C)=m p, then Pp(f, C)= C; hence
without loss of generality assume that distp(f, C) < mp ' There exists
hnE Ppn(f, C) by Theorem 4.2 for each n. Hence if we define h = lim infn hn,
the proof of (a) is complete by part (b).

If P is an orthogonally additive function modular, then although II ·1/ p is
a function modular, it is not necessarily orthogonally additive. We cannot
therefore apply Theorem 4.2 directly in proving the existence of best
II ·11 p -approximants; however we can apply Lemma 4.3.

THEOREM 4.6. Let pEas be orthogonally additive and have property (K).
!f C c L p is a nonempty order closed lattice, then C is II ·11 p-proximinal.

Proof Let f EL p' Iff E C, the assertion obviously holds; hence without
loss of generality we assume f 1; C.

Denote b = dist II-II/f, C). Because C is order closed, Theorems 4.2 and
3.9 apply to yield that C is p-closed. Therefore b #- 0.

First suppose that b~ mp ' By Proposition 1.16, for every g E C,

m p ~ b ~ inf Ilf - wll p~ Ilf - gllp ~ sup Ilwllp ~ sup p(w) ~ m p '
WEe WE L p WE L p

Thus Ilf -gllp=mp for every gEC and C=P I '" p(f, C).
Now we assume that bE (0, m p ). Take {gn} ~ C C such that Ilf - gnll ~ b.

For each n define bn= IIf - gn II p+ (lin) and Pn by Pn(g) = p(glbn). Clearly
each Pn is a function semimodular. For each E E1:, mp/E) = mp(E); hence
by 1.18(a), each Pn has property (K). Note that by the definition of L p ,

L p= Lpn' Since l/bni lib as n --+ 00, by the left continuity of P,

S~PPn(g)=S~pp(~)=p(j) foreach gELp.
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Moreover, for every n and for each g E C,
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thus Pn(f - g) ~ Pn+ 1(f - g);

that is, {p n} ~ is nondecreasing on I - C.
By Theorem 4.2 for every n, there exists hnE P Pn(f, C). We define h =

lim infn hn • For each n,

inf {rt.: P (I ~ gn) ~rt.} = III - gnllp~bn,

Hence by Lemma 4.3

sup Pn(f - h) = p(f - h) ~lim inf bn= b.
n

This means that for every n

n

(a) (I-h)P T =Pn(f -h)~(;.

Recall that as n ~ 00, l/(jn i l/(j; hence by the left continuity of P,

'(I-h) t (I-h)P (j ,P (j .
n

This combined with (a) yields that

(b) (I-h)P -(j- ~(j<mp,

and hence II/-hllp~(j<mp' From (b) and Prop.1.18(c) we obtain that
(f - h)/(j, and hence hELp. Since C is order closed, hE C. This and (b)
imply that hE PH1p(f, C), completing the proof.

SECTION 5

In order to state a uniqueness theorem, let us first recall the following
definition [23].
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DEFINITION 5.1. A function modular p is called strictly convex if p is
convex and if whenever h, g E L p satisfy

p(h) = p(g)

then h = g p-a.e.

and (
h + g) =p(h) + p(g)

p 2 2'

EXAMPLE 5.2. An Orlicz modular P", is strictly convex if and only if cp
is strictly convex [23].

THEOREM 5.3. Let p E rJllm be strictly convex and let C c L p be a
nonempty convex lattice that is order closed in L p. Let fEL p be such that
distp(f, C) < 00. Then the set Pp(J, C) consists of at most one element.

Proof Assume that Pp(J, C) contains g and h. That is

p(f - g) = p(f - h) =distp(J, C).

By the convexity of p,

(f-g+f-h)~P(f-g)+P(f-h)=d· t (f C)
P 2 "'" 2 2 IS p , •

However,
g+h
-2- EC,

so

as well. Thus

(
f - g + f - h) _ p(f - g) p(f - h).

P 2 -2 + 2'

hence by the strict convexity of p, g = h p-a.e., completing the proof.
In the next result we compare the sets of best p-approximants and best

11·11 p -approximants.

THEOREM 5.4. Let p E rJllm , let f E L p and let Dc L p be a nonempty set
such that

(i) J = distil_II/I, D) > 0, and

(ii) PII-II/f, D) #- 0.
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Then

(a) bP/f/b, D/b) e P 11 ' lIp(f, D) and

(b) if PI - g > l/bfor each gED, then bPp(f/b, D/b) = PII.llp(f, D).

Proof of (a). Suppose g/fJ EPp(f/b, D/b). Then
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for each hE P II -lIp(f, D).

Furthermore Ilf-hllp=b for each hEP II _lIp(f, D), hence by the left
continuity of p,

(d) (
f -h)p -b- ~b

Together (c) and (d) show that p((f - g)/b) ~ b and hence that
Ilf - gil p ~ b, which completes the proof.

Proof of (b). Let h EP II-II/f, D). By (a) it suffices to show that
hE bPp(f/fJ, D/b). To this end let g be any function from D. Hence
Ilf - gil p?:: b. Take 0 < y jb, then l/y!l/b. By hypothesis l/y E [0, PI_g), so
by (1.5),

(
f - g) (f-g)p -- -+p --

y b
as rP.

Now, since y < b~ Ilf - gllp, we have that p((f - g)/y) > y. Therefore

(
f - g) (f ~ g\

b=lim y~limp -y- =p -b-j-

By the left continuity of p we have that

(
f-h )

p Ilf - hll p ~ lif - hll p,

and finally for each g ED,

p (f ~ h) ~ p ( II;~ :11J~ Ilf - h II p= b ~ p (f ~ g),

that is h/b EPp(f/b, D/b), as desired.

Remarks. (a) Observe that whenever PI_g = 00, fJp p(f/6, D/b) =
PIIII/f, D). For example, if p is a Musielak-Orlicz modular satisfying il2

(see [23]), or iff -DeEp.
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(b) If fJf-g~ l/J, then the inclusion in (a) can be strict.

(c) If fJf - g> l/J, then we conclude from Theorem 5.4 that

implies Pp (f,~) # 0·
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